13 research outputs found

    Comments on the "Byzantine Self-Stabilizing Pulse Synchronization" Protocol: Counter-examples

    Get PDF
    Embedded distributed systems have become an integral part of many safety-critical applications. There have been many attempts to solve the self-stabilization problem of clocks across a distributed system. An analysis of one such protocol called the Byzantine Self-Stabilizing Pulse Synchronization (BSS-Pulse-Synch) protocol from a paper entitled "Linear Time Byzantine Self-Stabilizing Clock Synchronization" by Daliot, et al., is presented in this report. This report also includes a discussion of the complexity and pitfalls of designing self-stabilizing protocols and provides counter-examples for the claims of the above protocol

    Kinetics of Carbon Dioxide Absorption into Aqueous Solution of a Polyamine

    No full text
    Published in an open access journal this article is also available online at http://www.chemicalbulletin.ro/admin/articole/54742art_1(1-4).pdfInternational audienceThe absorption of CO2 into an aqueous solution with 1.45 mol/L 1, 5, 8, 12- tetraazadodecane (APEDA) polyamine has been studied at three temperature (298, 313, 333 K) in a Lewis type absorber with a constant gas- liquid interface area of (15.34 ± 0.05) x 10-4 m2. The experimental results have been interpreted using the equations derived from the two film model with the assumption that the absorption occurred in the fast pseudo- first- order kinetic regime. The results confirmed the validity of this assumption for the experimental conditions: the enhancement factor was always greater than 3. The rate constant derived from the experimental data (kov, s-1) was correlated through the Arrhenius plot (ln kov = A- B/T), and the optimal values of the constants A and B were obtained by the linear regression. The absorption of CO2 from flue gas into APEDA solution is a promising process for practical application at least from the kinetic point of view. The rate constant derived from experiments is of the same order of magnitude as that for the absorption into 2- amino- 2- methyl- 1- propanol (AMP) activated with piperazine (PZ) which was found to be the most advanced system among the published data up to now

    Component-wise incremental LTL model checking

    Get PDF
    Efficient symbolic and explicit-state model checking approaches have been developed for the verification of linear time temporal logic (LTL) properties. Several attempts have been made to combine the advantages of the various algorithms. Model checking LTL properties usually poses two challenges: one must compute the synchronous product of the state space and the automaton model of the desired property, then look for counterexamples that is reduced to finding strongly connected components (SCCs) in the state space of the product. In case of concurrent systems, where the phenomenon of state space explosion often prevents the successful verification, the so-called saturation algorithm has proved its efficiency in state space exploration. This paper proposes a new approach that leverages the saturation algorithm both as an iteration strategy constructing the product directly, as well as in a new fixed-point computation algorithm to find strongly connected components on-the-fly by incrementally processing the components of the model. Complementing the search for SCCs, explicit techniques and component-wise abstractions are used to prove the absence of counterexamples. The resulting on-the-fly, incremental LTL model checking algorithm proved to scale well with the size of models, as the evaluation on models of the Model Checking Contest suggests

    Bandwidth and Wavefront Reduction for Static Variable Ordering in Symbolic Reachability Analysis

    No full text
    We investigate the use of bandwidth and wavefront reduction algorithms to determine a static BDD variable ordering. The aim is to reduce the size of BDDs arising in symbolic reachability. Previous work showed that minimizing the (weighted) event span of the variable dependency graph yields small BDDs. The bandwidth and wavefront of symmetric matrices are well studied metrics, used in sparse matrix solvers, and many bandwidth and wavefront reduction algorithms are readily available in libraries like Boost and ViennaCL.\ud In this paper, we transform the dependency matrix to a symmetric matrix and apply various bandwidth and wavefront reduction algorithms, measuring their influence on the (weighted) event span. We show that Sloan’s algorithm, executed on the total graph of the dependency matrix, yields a variable order with minimal event span. We demonstrate this on a large benchmark of Petri nets, Dve, Promela, B, and mcrl2 models. As a result, good static variable orders can now be determined in milliseconds by using standard sparse matrix solvers
    corecore